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Received 23 February 1989 

Abstract. The domain of validity and the origin of different formulae relating conductance 
to transmissive behaviour is discussed. The large variety of possible measurement probes is 
emphasised. The quantised conductance of constrictions, studied in recent experiments, is 
treated. Theoretical discussions of that have stressed the supposedly unique role of G = 
(2e2/h)Tr(ttt) in this connection, regardless of the exact geometry or probe locations. This 
is shown to be incorrect, and a simple expression for the dependence of the ‘quantised’ 
conductance on the width of the wide region is given. We particularly emphasise the 
distinction between, on the one hand, experiments and discussions that are strictly limited 
to events at reservoirs and, on the other, those that have a concern with variations within 
the sample. 

1. Introduction 

Calculations of conductance of a sample, as a function of its transmissive behaviour, 
became fashionable following the work of Anderson et a1 [ 11. The method was originally 
applied to discussions of localisation and subsequently to mesoscopic samples [2-61. 
There are a number of alternative versions of this conductance formula, and valid 
reasons for the existence of various forms. First of all, a sample does not have a unique 
resistance. Its resistance depends on the way the current is introduced; how are the 
arriving carriers spread out both in momentum space and in real space [7,8]. While the 
purely geometrical effects of the connections are obvious, the dependence on the arriving 
momentum distribution has received little attention, except for this author’s discussions. 
A more widely appreciated reason for the existence of variation in conductance results 
from the variability in the choice of voltage used in the calculation of conductance. 
Where, in space, is the voltage measured? Is it measured by probes that are invasive, 
i.e. have an effect on the original transport system, or not? Are we measuring voltage 
or measuring electrochemical potentials? We will discuss these questions in some detail. 
In a final section we analyse the impressive recent work on quantised construction 
resistance in two-dimensional electron systems [9, 101. 

2. Is G - T o r  G - T l ( 1  - T)? 

Consider the situation depicted in figure 1. Thesample is, at least in the simplest versions 
of these theories, taken to be an elastic scatterer. The two reservoirs are taken to be at 
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differing electrochemical potentials. The sample is connected to the reservoirs through 
ideal, i.e. ballistic, conductors. The voltage used in defining the resistance that we discuss 
first is that in the ideal conductors. Actually, in most cases, it makes no difference 
whether we use voltage or electrochemical potentials; they can differ appreciably only 
over regions shorter than a screening length. Furthermore, we assume that voltage or 
electrochemical potential can be measured by non-invasive methods that do not perturb 
the existing value. In that case, for a one-dimensional sample the conductance G is found 
to be [1, 2,7] 

G = (e2/nR)T/R (2.1) 
where Tand R are the transmission and reflection probabilities of the sample. In equation 
(2.1), and throughout this paper, all equations are in a form allowing for a two-fold 
spin degeneracy, and without allowing spin to be a significant variable bearing on the 
scattering process. In the ideal conductor to the left of the sample there will be an energy 
range, defined by the respective chemical potentials p l  and ,u2 of the reservoirs, in which 
the current is carried. In that range the waves incident from the reservoir will interfere 
with the reflected waves, forming a standing-wave pattern. These interference effects 
are particularly familiar from electromigration theory [ l l ] .  The voltage that leads 
to equation (2.1) is that obtained in the ideal conductor after averaging over these 
oscillations; it does not attempt to follow the rapid variations within a Fermi wavelength. 

The multi-dimensional generalisation of equation (2.1) was provided by Azbel[12] 
and discussed in detail in [13]. That result is 

Here i refers to the channel number in the ideal conductor, and U ,  is the longitudinal 
velocity of the corresponding channel in the direction of current flow. The channels, 
numbered by i, can be associated with the different transverse eigenstates in the ideal 
conductor. Equation (2.2) assumes that the two ideal conductors are identical, but more 
general results are presented in [13]. Equation (2.2) has singularities arising from the 
reciprocal velocities, when one of the transverse channel energies is exceptionally close 
to the Fermi energy. These velocities also reflect the longitudinal density of states, 
inversely proportional to the velocity U , .  In real samples the singularity in the density of 
states is likely to be smeared out due to the finite length of the ideal conductor and/or 
to the appearance of other length scales not present in analysis of [13]. Furthermore, a 
little unintended residual scattering, or imperfect control of the width of the conductor, 
will also provide such smearing. We shall invoke such a smearing in § 5 .  

Recent applications of equation (2.1) were provided by [ 141 and [ 151. 
Shortly after Anderson et al [ l ]  drew widespread attention to equation (2.1), a 

number of papers appeared arguing that conductance was proportional to transmission 
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Figure2. Energy distribution of electrons in a perfect metallic conductor, with a field applied 
over a region of length L (from [20]). Only electrons with a positive velocity are shown. t is 
the time during which excess electrons have moved to the right. 

probability, and that the expressions with more complicated denominators were incor- 
rect. These papers, as well as the rebuttals to them, are cited in [16] and [17]. The latter 
[17] is, in fact, closely allied to the viewpoint of the earlier papers advocating G - T. A 
conductance proportional to transmission probability has been familiar for decades 
through the concern with tunnelling barriers [18]. For T 4 1 ,  of course, the denominator 
in equation (2.1) can be taken to be unity, and the distinction between the two forms 
becomes unimportant. The availability, however, of conductors with good transmission 
in which one can measure, for example, the resistance of a corner in a wire [ 191 has made 
the distinction significant. 

Figure 2 ,  [20], shows somewhat symbolically what must happen according to the 
papers advocating G - T ,  when we assume a voltage drop across a region of space that 
transmits perfectly and is connected to leads of the same width. Extra carriers are 
transmitted through the region assumed to have perfect transmission. If all the extra 
carriers incident from the left, in the range of bias, are transmitted, then we find G = 
2e2/h. This is the result implied by G = 2e2T/h, for T = 1. By contrast, equation (2.1) 
yields an infinite conductance, for T = 1. The assumptions depicted in figure, 1 however, 
do not make sense. The transmitted carriers in the shaded region have a large space 
charge, and this simply cannot be waved aside. The equation G = 2Te2/h, together with 
its multi-dimensional generalisations, has turned out to have a very significant range of 
applicability. That, however, is fortuitous; the early proposals for this expression simply 
ignored the space-charge questions, and did not invoke reservoirs, whose kinetics is 
essential for the proper applicability of the simpler result without the complicating 
denominators. 

Eventually Imry [2] ,  enlarging upon a discussion by Engquist and Anderson [21], 
pointed out that the simpler formulae did apply to the electrochemical potential dif- 
ference, or the potential difference, if measured between points way inside the reservoirs 
on each side of the conductor. A reservoir is not just an extension of the sample or an 
extension of the ideal conductor; the physics of reservoirs has been discussed in 0 7 of 
[8] and 0 3 of [22]. We return to the physics of reservoirs later in this paper. Buttiker 
provided a proper treatment for the multi-dimensional conductor, with more than two 
attached reservoirs [23]. This has become an essential tool for interpreting the typical 
mesoscopic four-probe measurements, for understanding the quantum Hall effect, and 
for interpreting conduction in systems with inelasticity [24]. 

Imry’s result [2] is 

G = (e2/nh)Tr(ttf) (2.3) 
where t is the transmission matrix specifying the transmitted wavefunctions relative to 
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the incident waves. The trace in equation (2.3) represents a sum over the channels of an 
ideal conductor. The electrochemical potential difference, however, invoked in the 
conductance of equation (2.3) is not that between the ideal conductors, but is the 
electrochemical potential difference between the reservoirs of figure 1. Deep inside the 
reservoirs we have an equilibrium distribution of carriers, without current flow. It is that 
electrochemical potential difference which yields equation (2.3). Note, however, that 
the transmission matrix of equation (2.3) characterises transmission between the ideal 
conductors of figure 1 ,  and not transmission between reservoirs. Thus, equation (2.3) 
cannot possibly be applicable if the interface between the reservoir and the ideal con- 
ductor adds additional scattering, not taken into account in equation (2.3). States coming 
out of the ideal conductor, towards the adjacent reservoir, must be able to enter that 
reservoir without further reflection. This requires a gently flared horn-like connection 
between the ideal conductor and the reservoir, or other ‘matching’ devices, as discussed 
in connection with figure 6 of [8]. Unfortunately, the rapidly growing body of theoretical 
literature that has appeared, attempting to interpret the experimental results of [9, 101, 
has not been sensitive to this distinction between ideal conductors and reservoirs, nor 
to the shape of the interface between these. We return to that subject, subsequently. 

3. Probes 

There is now a prevailing presumption in this field that only electrochemical potentials, 
rather than electrostaticpotentials, can be measured, and that they have to be measured 
by reservoirs connected through leads that are similar to the conducting sample and 
perturb the conduction process. This is the type of configuration analysed in [23]. The 
prevailing assumption is best characterised by a quotation from Stone [25]: ‘. . , it is 
unreasonable to suppose that the voltage drop across some region of a small sample can 
be measured without the presence of the voltage probes strongly affecting the results 
of the measurement.’ This presumption for the needs of strongly perturbing leads is 
remarkable; normally in physics we look for minimally invasive methods of measure- 
ment. There are alternative voltage measurement methods available, and we summarise 
these below. 

First we emphasise that we are not limited to measuring electrochemical potentials; 
voltages can be measured. This is clear in the case of contact potential differences. Two 
connected dissimilar metals, in thermal equilibrium, have no electrochemical potential 
difference. But they do have an electrostatic potential difference, which can be 
measured, e.g. through phase-locked techniques, with oscillating capacitive probes. 
Capacitive probes have also been used in more modern contexts [26-281. Additionally, 
capacitive probes have been used in AC transport measurements [29]. We could measure 
transport voltage differences by measuring the alternating current between two con- 
nected probes, both capacitively coupled to the sample, in the presence of AC transport 
through the sample. What is the back effect of these probes on the transport? We note 
that the voltage drop within a conductor, at sufficiently low frequencies, is determined 
by the requirement for continuity of current. Externally applied electrostatic fields (i.e. 
through capacitive coupling) only have an effect on transport through the field effect. 
i.e. through the modulation of carrier density at the conductor surface. Furthermore, 
electrostatic fields that are themselves proportional to the transport current, as can be 
the case for capacitive measurement probes, only have an effect on the transport field 
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distribution within the conductor, which is proportional to the square of the current flow. 
They will not affect the first-order (linear) behaviour. 

Electric fields can, in principle, be measured or characterised in a great many other 
ways. In addition to the traditional hypothetical test charge, there is nuclear quadrupole 
resonance or the deflection (outside the sample) of electron beams. Electromigration is 
a complex and indirect way of probing electric fields, but unlikely to occur at very low 
temperatures [ l l ] .  The internal voltage distribution, in the sample, has an effect on the 
non-linear behaviour. See, for example, the discussion in [30]. Experiments on non- 
linearity [31-331 have been done, and many more are likely to come. 

Can capacitive experiments have high spatial resolution? Consider a scanning tun- 
nelling microscope (STM) probe, used capacitively. The problem with that, if used in the 
most obvious way, is that it it not a high-resolution probe. The capacitance will not just 
be determined by the end of the tip where tunnelling occurs, but will be dominated by 
the fringing fields. There is a way out, however, suggested by the work of van Bentum 
et a1 [34]. They observe the Coulomb blockade associated with small tunnelling capaci- 
tances, in an STM geometry. Why? Because only that part of the capacitance counts 
which can deliver charge to the tip, within the time taken by the electron to tunnel. 
To evaluate that capacitance requires not only an understanding of traversal time in 
tunnelling, but also of the charge propagation process. Does it only involve surface 
plasmons, or also electromagnetic wave propagation effects? The results of [34], how- 
ever, do show that the effective capacitance is limited, and well below the static capaci- 
tance. The Coulomb blockade is, of course, a tunnelling effect. The onset of tunnelling 
is, however, determined by capacitive effects. 

The above schemes will only work for metallic samples with an accessible surface. 
For the semiconductor field-effect geometry there may be a more practical scheme. 
There we can use the non-linear capacitance of measurement gates to measure the 
voltage in the underlying channel, or ballistic conductor. The potential disturbance 
within that conductor can be kept within a range, and be made smooth enough, so as to 
cause no additional scattering. Or,  we can tie two otherwise floating gates together and 
measure the current between them. The conductance of equations (2.1) and (2.2) leads 
to a key point: When  there is no intervening barrier, there should be no voltage drop. A 
perfect conductor has no resistance! The configuration consisting of two successive 
measurement gates over the same ballistic channel should be particularly simple. More 
generally, at two different positions along an ideal conductor (far enough away from 
reservoirs or obstacles so that evanescent modes are not present), all quantities of 
interest such as carrier populations, or potentials, must be the same. Non-invasive 
methods of measurement must yield the same potential at the two points. Only if we insist 
on counting the carriers moving to the right at the left end, and the carriers moving to 
the left at the right end, do we find the electrochemical potential difference found in 
[17]. But there is no reason for such a procedure. 

Probes, of course, can also measure the carrier population, e.g. by attempts to have 
a small reservoir whose electrochemical potential adjusts to make the net current 
between the sample and the reservoir vanish [23]. We will not discuss such probes in 
detail comparable to that just devoted to capacitive probes. We do, however, stress that 
the probes can be very loosely coupled, as in the case of S’rM voltage measurements 
[35,36]. Probes coupled to the electron population in the sample do not need to be 
invasive; they do not need to have an appreciable effect on the underlying transport 
process. Even though the probes are not invasive, that does not guarantee that the 
measurements will be easy to interpret. The probes can still couple to the electron 
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motion in the sample in a way that depends delicately on the multiple interference 
between scattering centres in the sample and in the probes [23,37]. On the other hand, 
we do not need to sanctify the currently and readily available experimental situation as 
that which is inevitable. We repeat from [22]: 

Note that if we are concerned with measurements on an ideal conductor, inserted 
between a sample reservoir, then we can (in principle, probably not in reality) use 
a whole array of loosely identical probes to achieve a variety of measurements. We 
can, for example, use the equivalent of a phased array to measure the carriers 
present in a particular ‘channel’, moving in a specified direction (toward reservoir 
or toward sample). Alternatively, we can use a random array to eliminate the effect 
of interference oscillations, and thereby measure an average carrier population in 
the ideal conductor. 

4. Central issue 

We now emphasise our most central point. We can, on the one hand, focus on experi- 
ments where we are only concerned with events at reservoirs. Thus, for example, the 
current comes from one reservoir and flows to another. Voltages are measured at 
additional reservoirs. In that case the formalism of [23] applies. Alternatively, we may 
have a concern with the voltage at some point away from a reservoir. Once we correct 
voltage-probe measurements for a series resistance, as is done in [9] and [lo], we 
are asking a question of the latter type, regardless of the presumed simplicity of the 
correction. (Actually, [ 101 presentsraw datainitsfigures; the series-resistancecorrection 
arises in the supplementary discussion.) Spatial variation of the self-consistent voltage 
distribution must be understood through some variation of the methods employed in 
my papers [22,38]. It cannot be done without recourse to Poisson’s equation, space- 
charge neutrality, a frequency- and wavenumber-dependent dielectric constant for the 
electron gas, or some other explicit way of coping with screening. Nothing of that sort 
turns up in [ 171 and [25],  Papers that ignore Poisson’s equation, or papers that go to the 
even further extent of explicitly stating that it is not necessary to pay attention to such 
questions [17,39], may be correct within their declared purpose, but cannot possibly 
have any bearing on the many questions related to the spatial features of the voltage 
drop within the system. 

If we want to understand the voltage division in a sample that includes elastic 
scattering and is attached to leads that include inelastic scattering, then equation (2.3) 
and its multi-terminal generalisations are useless. We face a problem that has not been 
analysed in detail. But it is susceptible to the methods reviewed in [22]. We follow the 
carriers out of their reservoirs, and through the sample, and then find a voltage division 
through the subsequent self-consistent screening of these carriers. The voltage drop 
across the central ‘sample’ with purely elastic scattering will not correspond to any of 
the explicit results displayed in 5 2, because the carrier distribution incident on the 
sample is, in part, determined by the kinetics in the leads. The kind of difficulty is 
emphasised in [7] and in my other papers. 

5. Conduction through narrow apertures 

Recent papers [9,10] have drawn attention to the dramatic nature of the conductance 
steps encountered as the width of a narrow channel is varied. This effect could have been 
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anticipated on the basis of a number of theoretical discussions, but nevertheless came 
unexpectedly, For example, [13] states: 

For a system where the Fermi energy EF can be changed, such as in metal-oxide- 
semiconductor device, E,  may be made to cross a particular transverse level and to 
switch on or off its contribution to the conductance. This will lead to sharp changes 
in the conductance near these crossings. 

But the accompanying description in [13] is too flawed to make this a serious candidate 
as an anticipation. The sentences following equation (4.19) of [2] come closer. The 
clearest anticipation came from those concerned with an STM geometry, particularly in 
a conference paper by Garcia in the summer of 1987, which displayed the repeated steps 
in the conductance [40]. After the experiments on two-dimensional electron gas (ZDEG) 
geometries were reported [9, 101, a great many additional calculations appeared. We 
only relate to papers that analyse the conductance as a function of transmission, cal- 
culated for a geometry that includes a narrow region separating two wider ballistic 
conductors. Our comments bear little or no relationship to other theoretical discussions 
[4143]. 

At the time this is being written the author is aware of six efforts that explain the 
quantised resistances observed in [9] and [ 101 via a transmission probability calculation 
of the type alluded to above [44-49]. Undoubtedly there will be more entries, and 
possibly some of the six that are in preprint form will change on their way into print. As 
a result we minimise attention to the individual nature of [44-491 and emphasise remarks 
that apply to several of them. These papers [44-49] calculate the transmissive behaviour 
of a narrow constriction using a variety of geometries, and a variety of analytical 
procedures. None of these papers consider the actual details of the potential variation 
in the electron channel, as caused by the controlling gate structure [50].  We have no 
arguments, at all, with quantum-mechanical details of [44-491 and their calculation 
of transmission matrices. All of our subsequent comments relate to the use of this 
information in the calculation of a conductance. References [44-491 invoke equation 
(2.3), or its equivalent. Considered as a collection, they appear like a clear vote in favour 
of equation (2.3), relative to equation (2.2). Indeed, [17] and [45] make this particul:-lr!y 
explicit. For example, [17], after an illusion to [9], states: ‘. . . Therefore we conclude 
that Equation (4), including the two-probe and one-channel limits, is the physically 
relevant Landauer formula for all the present experiments.’ Equation (4) in this citation 
refers to the generalisation of equation (2.3) to more than two connections [23]. None 
of the six cited theoretical contributions seem to be sensitive to the point made in our 
3 4. Additionally, none of them seem to be sensitive to the very elementary fact that we 
have taken up in 3 2, that equation (2.2) gives the voltage between reservoirs, not 
between the ballistic conductors. While we have lumped the six citations, we should 
actually distinguish between those [44-461 which explicitly allow for ballistic conductors 
with a well defined width, as contrasted to those [47-491 which explicitly or implicitly 
assume that the constricted region occurs between ballistic conductors of unlimited 
width. The former [44-46] are the primary focus of our comments. The latter [47-491, 
which do not attempt to model the experiments in equal detail, are not actually in error. 
The ‘error’ is, admittedly, a very minor quantitative issue. It is the qualitative issue, the 
implicit suggestion (and more than implicit in [17] and [45]) that equation (2.3) is 
‘justified’ by the constriction experiments, that is our concern. 

We adopt the terminology of [45] and refer to the wide ballistic regions as W, and W 
for the actual width of that region. Similarly N and N refer to the narrow region, and 



8106 R Landauer 

Electron f l o w -  

Figure 3. Two ballistic conductors with probes 
PA and P, separated by a narrow constriction C. 
Current connects to reservoirs at far left and right. 

WNW describes the overall configuration of [9 and [lo]. The actual geometry of [9] and 
[lo] differ somewhat. Both papers, however. invoke corrections for presumed series 
resistances, and, therefore, our comments in { 4 apply. Figure 3 idealises the situation, 
but is closer to  that described in [lo] than that of [9]. 

Our discussion is aimed at a general point, applicable to the case, for example, where 
the W and N regions have an interface with sharp corners. But, for simplicity, we first 
invoke the specifics of an adibatic transition between the W and N regions. We assume 
that the narrow region ends in a tapered horn, and that all modes in the narrow section 
can pass on out to the wider region without reflection. We invoke a totally adiabatic 
horn which flares out gradually, until it covers the whole width of the wide area. In that 
case the lowest transverse mode in the wide section (no nodes in the transverse direction) 
maps onto the lowest mode in the constricted region. We also assume that the constriction 
is long enough so that evanescent modes excited by arriving waves at one end have 
a negligible transmission probability. We invoke equation (2. l), repeated here for 
convenience 

The channels in the wide conductor are either reflected totally by the constriction, or 
transmitted totally. Then ZlTI  counts the number of transmitted channels, i.e. the 
number of channels present in the narrow constriction. Call that number NN. The other 
factor in the numerator, C,u; l ,  will be evaluated in detail. In the denominator only the 
channels that are reflected contribute. We have 

Z ( U Y ' ( 1  + R ,  - T , )  = 2 (CAU;' - ETU; ' )  (5 .2)  

where A represents summation over all channels and T over transmitted channels. The 
first term on the RHS in equation (5.2) is the same as the one that occurs in the numerator 
of equation (5.1). What about CTu;l? Let us assume W + N .  Then only the channels 
with the lowest transverse energy (in the region) will be transformed adiabatically, via 
the 'horn', into the transmitted channels in the N region. These are channels which, in 
the W region, have motion almost parallel to the direction of current; U ,  will be close to 
uF. Therefore, we approximate CTu;' by " u s ' ,  where uF is the Fermivelocity. Ny is 
the number of channels (not counting spin) in the constriction. 

Now let us face CAu;'. We will approximate the sum through an integral. This not 
only makes the calculation easier, it also provides the smearing discussed in 9 2 and 
needed to eliminate the anomalous effects that result when one of the transverse energies 
is exceptionally close to the Fermi energy. The result is Wm/2h, where m is the carrier 
mass and W the width of the wide region. Avishai [51] has kindly checked the validity 
of this approximation through a computer simulation. Our result can, equivalently, be 
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written as (7c/2)NwuF' , where N w  is the number of channels (not counting spin) in the 
wide region. Thus equation (5.1) becomes 

or 

(5.3) 

(5.4) 

The (e2/7ch)NN prefactor in equation (5.4) is the widely publicised result, based on 
G - Tr(ttf). The remaining correction is close to 1, if Nw S- N N ,  but is larger than unity. 
This larger conductance is real; it represents the fact that the W regions are not perfect 
reservoirs. The carriers, there, are not in equilibrium, but to a small extent reflect the 
electrochemical potential of the far-away reservoir, on the other side. The larger W is 
in comparison to N ,  the closer the final factor in equation (4) is to unity. Thus WIN is a 
measure of the quality of the W regions as approximate reservoirs. 

Note that equation (5.4), which measures the quality of the W region as a reservoir 
for the current in the N region, did not need to invoke elastic or inelastic scattering. As 
we go further into a reservoir, the electronic motion must approach that characteristic 
of thermal equilibrium appropriate to the carriers emerging from the reservoir into the 
conducting sample. This can be achieved through simple geometrical dilution. As we go 
further into the reservoir, a higher proportion of the carriers present at a particular point 
originated far inside of the reservoir, rather than the sample. This author has, in the 
past, perhaps exaggerated the need for inelastic processes in the reservoir. Clearly we 
want the carriers coming out of the reservoir to be incoherent with those entering it. But 
if the reservoir is large enough, then for a long time that incoherence can be provided 
simply by the fact that the states coming out of the reservoir are not the states that entered 
from the sample. It is the geometrical dilution of incoming carriers that constitutes the 
most essential aspect of a reservoir. 

Let us now continue with an alternative formulation of the notions just presented, 
but with wider applicability. We pay for the greater applicability through an expression 
for our result that has physical meaning, but is not readily calculated. Equation (2.3) 
gives a conductance for the situation in figure 3 if voltage is measured between reservoirs 
in figure3. For voltage probes,as shown in figure 3, the conductance can be more 
complex than the experiments indicate [23]. Here we calculate the potential difference 
between the ballistic regions without attention to probes, using the concepts of [13] but 
without actually invoking equation (2.2).  As stated, such an expression assumes spatial 
averaging to remove interference effects. We treat the diffusion of non-interacting 
carriers; allowing later for self-consistent screening will not change the drop in elec- 
trochemical potential. In lead A in figure 3 the electrochemical potential, reflecting 
carrier density there, will be below pL deep inside the left-hand reservoir. That reservoir 
has an equilibrium distribution, given by pL; this also characterises carriers arriving at 
A from the left. The carriers arriving at A from the right will, in part, have come through 
the constriction and their population will depend on pR. The current j ,  through A, is due 
to an imbalance between left-moving and right-moving carriers, and has the magnitude 
ndWevF(cos e). Here, W is the width of lead A, uF the Fermi velocity, n d  the deficit in 
carrier density of the carriers from the right, relative to those from the left, and 8 the 
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angle of the carriers relative to the direction of current flow. (cos e) denotes an average 
for the mix of channels in the flow. The electrochemical potential in lead A is 

P A  = pL (dp/dn)nd = p L  - (i/weVF(cos O)) dp/dn (5 .5)  

with a similar expression for pB. For simplicity, we use the same W ,  z ) ~  (cos 0) and 
dp/dn at B as at A. Using dp/dn = huF/2k, where k is the Fermi wavenumber, and 
kW/n = N ,  as the number of transverse channels, we find 

AR = j - ' [ ( p L  - PR)  - ( P A  - /AB)] = h/m2N, (COS e). (5.6) 

Here A R  denotes the resistance between reservoirs minus that between A and B. Let 
the conductance between reservoirs be denoted by GR. The conductance between A 
and B is GAB = GR(1 + GRAR), if AR is small compared to l /GR. With equation (5.6) 

GAB/GR = 1 + 2 Tr(tti)/nN, (cos e). (5.7) 

In a quantised plateau Tr(ttt) = N N ,  where NN is the channel count in the constriction. 
Thus, GAB/GR in equation (5.7) becomes 1 + (2NN/nN,)(cos e)-'. We see that the 
smallness of (2NN/nN,) (cos e)-' measures the quality of the ballistic regions as res- 
ervoirs. If the constriction ends in slowly tapered horns, then the transverse wave- 
numbers are reduced in passage out through the horn, and (cos e) is close to 1. In that 
case G/GR becomes 1 + (2"/nN,), in agreement with equation (5.4). Thus, the 
conductances evaluated in [44-46] need the correction in equation (5.7). The pecu- 
liarities of invasive probes may cause that to be incorrect, but surely the potential in the 
ballistic regions will be more relevant than that in the reservoirs. The correction described 
by equation (5.7) may be unimportant quantitatively. We emphasise it to demonstrate 
the greater applicability of the views expressed in [13] relative to that of equation (2.3). 

Note that for the density of states in equation ( 5 . 5 )  we used the simple Fermi-Thomas 
expression huF/2k, rather than one more delicately adjusted to the particular geometry 
at hand. This provides the same smearing discussed earlier. The precise validity of this 
approximation depends on the exact method of voltage or electrochemical potential 
measurement. It will also, of course, depend on the degree to which further residual 
scattering is really absent, and on the degree with which the transverse dimension W is 
really controlled. 

6. Conclusions 

The equation G = (2e2/h) Tr(tti) and its multi-terminal generalisation apply when we 
are strictly concerned with current sources and voltage measurements at reservoirs. 
Elastic or inelastic scattering along a conducting lead does not turn it into a better 
approximation of a reservoir than is allowed by the purely geometrical spreading. If we 
are dealing with the voltage distribution within a sample, e.g. by allowing for a series- 
resistance correction from the voltages measured at probes, then we must utilise theories 
that invoke Poisson's equation in their formulation. A theory of this sort [13] not only 
can be used to explain quantised constriction resistances, but is essential to allow us to 
understand the effects of the width of the wide regions on the measured results. Voltage 
probes, along a sample, need not be invasive and can be purely capacitive. 
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